10 research outputs found

    SMAP Mission Status, New Products, and Extended-Phase Goals

    Get PDF
    NASA's Soil Moisture Active Passive (SMAP) Project now has completed its prime-phase (three years) mission and has entered a new five-year extended phase. The global L-band radiometry from SMAP has enabled diverse scientific investigations in water, energy and carbon cycle research, terrestrial ecology and ocean science. These include eliciting the role of soil moisture control on the evaporation regime and vegetation gross primary productivity, observing soil-vegetation continuum water relations, analysis of flood and droughts, climate modeling and weather prediction, detecting ocean high-winds during tropical storms, and observing fresh-water outflow in coastal oceans. This paper highlights the recent enhancements to the SMAP suite of science products (from instrument level-1 to geophysical retrievals level-2 and level-3)

    SMAP Mission Status and Plan

    Get PDF
    The prime mission phase of National Aeronautics Space Administration's (NASA's) Soil Moisture Active Passive (SMAP) project was successfully completed in June 2018. The extended phase has been approved by NASA for operation through 2021 (with option to 2023). SMAP data have been well calibrated and have enabled diverse scientific investigations in water, energy and carbon cycle research, terrestrial ecology and ocean science. This paper will provide the highlights of algorithm updates to radiometric calibration and soil moisture retrieval algorithms. A summary of extended phase activities, in particular the SMAPVEX19 campaign, for product enhancements will be provided

    The Soil Moisture Active Passive Mission (SMAP) Science Data Products: Results of Testing with Field Experiment and Algorithm Testbed Simulation Environment Data

    Get PDF
    Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagemen

    NASA's SnowEx Campaign: Observing Seasonal Snow in a Forested Environment

    Get PDF
    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earth's terrestrial snow-covered regions? Year 1(2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques - active and passive microwave, and active and passive optical/infrared - to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements - in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented

    Investigation of the 2006 Drought and 2007 Flood Extremes at the Southern Great Plains Through an Integrative Analysis of Observations

    Get PDF
    Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic patterns, we have demonstrated that the two positive feedback processes during the extreme dry and wet periods found in this study play a key role to maintain and reinforce the length and severity of existing drought and flood events. For example, during the extreme dry period, with less clouds, LWP, PWV, precipitation, and thinner Cu cloud thickness, more net radiation was absorbed and used to evaporate water from the ground. The evaporated moisture, however, was removed by low-level divergence. Thus, with less precipitation and removed atmospheric moisture, more absorbed incoming solar radiation was used to increase surface temperature and to make the ground drier

    NASA's Soil Moisture Active Passive (SMAP) Mission and Opportunities for Applications Users

    Get PDF
    Water in the soil鈥攂oth its amount (soil moisture) and its state (freeze/thaw)鈥攑lays a key role in water and energy cycles, in weather and climate, and in the carbon cycle. Additionally, soil moisture touches upon human lives in a number of ways鈥攆rom the ravages of flooding to the needs for monitoring agricultural and hydrologic droughts. Because of their relevance to weather, climate, science, and society, accurate and timely measurements of soil moisture and freeze/thaw state with global coverage are critically important.United States. National Aeronautics and Space Administratio

    The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system

    No full text
    Results are presented from the multi-institution partnership to develop a real-time and retrospective North American Land Data Assimilation System (NLDAS). NLDAS consists of (1) four land models executing in parallel in uncoupled mode, (2) common hourly surface forcing, and (3) common streamflow routing: all using a 1/8掳 grid over the continental United States. The initiative is largely sponsored by the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP). As the overview for nine NLDAS papers, this paper describes and evaluates the 3-year NLDAS execution of 1 October 1996 to 30 September 1999, a period rich in observations for validation. The validation emphasizes (1) the land states, fluxes, and input forcing of four land models, (2) the application of new GCIP-sponsored products, and (3) a multiscale approach. The validation includes (1) mesoscale observing networks of land surface forcing, fluxes, and states, (2) regional snowpack measurements, (3) daily streamflow measurements, and (4) satellite-based retrievals of snow cover, land surface skin temperature (LST), and surface insolation. The results show substantial intermodel differences in surface evaporation and runoff (especially over nonsparse vegetation), soil moisture storage, snowpack, and LST. Owing to surprisingly large intermodel differences in aerodynamic conductance, intermodel differences in midday summer LST were unlike those expected from the intermodel differences in Bowen ratio. Last, anticipating future assimilation of LST, an NLDAS effort unique to this overview paper assesses geostationary-satellite-derived LST, determines the latter to be of good quality, and applies the latter to validate modeled LST.</p

    The Soil Moisture Active Passive (SMAP) Mission

    No full text
    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of the soil moisture present at the Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere. The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers. Soil moisture measurements are also directly applicable to flood assessment and drought monitoring. SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP is scheduled for launch in the 2014-2015 time frame
    corecore